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The investigation focuses on solitary-wave solutions of an approximate pseudo- 
differential equation governing the unidirectional propagation of long waves in a 
two-fluid system where the lower fluid with greater density is infinitely deep and the 
interface is subject to capillarity. The validity of this model equation is shown to 
depend on the assumption that T/g(p2 -pl) h2 % 1, where T is the interfacial surface 
tension, p2-pI the difference between the densities of the fluids and h the 
undisturbed thickness of the upper layer. 

Various properties of solitary waves are demonstrated. For example, they have 
oscillatory outskirts and their velocities of translation are less than the minimum 
velocity of infinitesimal waves. Also, they realise respective minima of an invariant 
functional for fixed values of another such functional, being in consequence orbitally 
stable. Explicit non-trivial solutions of the equation in question are unavailable, but 
an existence theory is presented covering both periodic and solitary waves of 
permanent form. 

1. Introduction 
Attention has recently been given to the possibility of gravity-capillary surface 

waves of solitary type on deep water. Such solitary waves have speeds of translation 
less than the minimum speed of infinitesimal waves, namely (4gT/p)i, where T is the 
surface tension and p the density of water. (Thus for water the minimum speed is 
about 23 cm s-l.) Extensive investigations into the properties of these waves have 
been reported by Longuet-Higgins (1989) and Vanden-Broeck & Dias (1992). But it 
so far remains an open question whether or not such solitary waves are stable.? 

The present paper deals with a comparable class of solitary waves about which 
definite theoretical evidence of stability is available. The waves can occur in a two- 
fluid system where a thin layer of incompressible fluid with density pl ,  bounded 
above by a rigid horizontal plane, lies on a very deep incompressible fluid with 
density p2 > pl .  It will be shown in Q 2 that, provided the interfacial surface tension 
T satisfies T 9 g(p2-p l )h2 ,  where h is the undisturbed thickness of the upper layer, 
long waves of small amplitude propagating unidirectionally in this system are 
governed approximately by the (dimensionless) equation 

(1 .1)  
in which a and /3 are positive constants, with /3 9 a for consistency of the 
approximation. Here L is the linear symmetric pseudo-differential operator defined 
by its symbol Jkl (in the sense that -a: has the symbol k2) .  The same operator 
appears in the Benjamin-Ono equation (named after Benjamin 1967 and Ono 1975). 

Among properties of solitary-wave solutions of (1.1) to be examined in $3, a 
variational principle for them will subsequently be the most helpful. Specifically, any 

?And, as far as I know, there is yet no experimental observation of them. 

ut + u, + ~ U U ,  - aLu, -/3u,,, = 0, 
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such solution in the form u = $(s -c t )  realizes the (negative) minimum of a 
functional G for a respective given value of another, positive-definite functional F, 
both of which functionals are invariant for any solution u of ( 1 . 1 ) .  This attribute 
strongly suggests that solitary-wave solutions are orbitally stable (i.e. stable in respect 
of shape and size), although a proof of stability will not be included here. 

The variational principle will be used in $4 to prove that (1 .1)  has smooth solitary- 
wave solutions $ ( s - c t ) ,  and also steady-wave solutions $(s-ct; 21) that are periodic 
with sufficiently large period 21. Either class of solutions can be parameterized by 
values of F > 0,  and it will be shown that dcldF < 0. 

When a = 0, equation ( 1 . 1 )  reduces to the well-known equation of Korteweg & de 
Vries (1895). But, as was noted in their original paper and as was re-emphasized by 
Benjamin (1982), when p > 0 solitary-wave solutions of the KdV equation have 
properties qualitatively different from those when /3 < 0. (As regards the original 
application to long water waves in an open channel of depth H ,  the present case 
/3 > 0 corresponds to Bond number 7 = T/pgH2 > f.) With a = 0 and /3 > 0 in (1.1), 
these solutions are 

$ = --(-)sech2{-(-) 3 l - c  1 l - C T  ( s -c t ) } ,  
2 P  2 P  

where necessarily c < 1. Thus $(s) < 0 for all X E R ,  and c is less than the minimum 
velocity of infinitesimal waves (i.e. dimensionally c < (gH);  in the original application 
with 7 > +). 

The well-known result (1.2) represents an extreme case of the present class of 
solitary waves, being of course recovered in the limit a $0. But explicit steady-wave 
solutions of (1.1) are unknown in the case of both a and ppositive. Solitary-wave and 
periodic solutions of (1.1) are known explicitly in the case ,8 = 0 (Benjamin 1967), 
solitary waves then being positive with c > 1 if a > 0. It would be misleading, 
however, to regard this case too as being covered by the present theory, which 
depends crucially on the specification that /3 > 0. 

It should be acknowledged that oscillatory solitary waves akin to the present ones 
have also been studied theoretically by Iooss & Kirchgassner (1990), who reappraised 
the classic open-channel model in the case 7 < 4. Their problem is in effect the finite- 
depth counterpart of the problem treated by Longuet-Higgins (1989) and Vanden- 
Broeck & Dias (1992). As in the present case, the speed of infinitesimal waves then 
has a minimum less than the speed of infinitesimal waves of extreme length, and 
there appear to be solitary waves with speeds less than this minimum. Iooss & 
Kirchgassner examined the respective mathematical problem from the standpoint of 
bifurcation theory ; but they too offered no conclusion about the stability and 
consequent realizability of the solitary waves in question. The present problem is 
quite different in detail from theirs and the other cited. 

2. Derivation of evolution equation 
Long-wave models such as the KdV equation, representing the interaction of small 

nonlinear and dispersive effects on unidirectional waves, have been derived by a 
variety of more or less equivalent means (e.g. Benjamin 1967, $8 1 and 2 ; Whitham 
1974, $13.11). Here it is apposite merely to highlight the essential ingredients, rather 
than completing the details of a formal derivation. 

Let us start from the dispersion relation that holds for infinitesimal waves in the 
two-fluid system proposed in 1 .  Incompressible inviscid fluid of density p1 lies in a 
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layer of thickness h above an infinitely deep incompressible inviscid fluid of density 
p2 > pl. The less-dense fluid is bounded above by a rigid horizontal plane and the 
interface between the fluids is subject to surface tension T .  One supposes that the 
vertical displacement of the interface has the form = sexp{i(ot-kkx+ b ) } ,  where o, 
k and b are real constants, e is an infinitesimal constant, x is a horizontal coordinate 
and t is time. Then, by standard methods (cf. Lamb 1932, §231), the phase velocity 
c = w / k  is found to be related to wavenumber k according to 

Provided the effect of surface tension is included additionally, this formula is 
recovered by taking the limit h'+ rx, in a result given by Lamb (1932, p. 371, eqn. 
( l l ) ) ,  which allows for the lower fluid to be bounded by a rigid horizontal plane at  
depth h' below the interface. 

In the limit Ikl+O, (2.1) shows that the speed co of extremely long infinitesimal 
waves is the (positive) square root of 

ci = g h e -  1). 

The value c(0) = co is a local maximum of c ( k ) ,  but is plainly not an absolute 
maximum if T > 0. 

The relation c = c ( k )  is not analytic at the origin, which fact has been noted in a 
recent paper (Benjamin 1993 a )  to exemplify a common peculiarity of hydrodynamic 
models that feature an infinite expanse of incompressible fluid. To provide the basis 
of a long-wave theory, however, the even function c ( k )  can be approximated by the 
leading terms of its expansion in powers of IkI. Thus, from (2.1), for waves 
propagating in the positive x-direction (c > 0) ,  we deduce that 

T + ( ~ ~ - ~ ) h 2 } k 2 + o ( l k 1 3 ) ]  (2.2) 

as an asymptotic approximation for small Jkl. For consistency in what follows, it is 
required that k,h 4 1, where k, is the value of Ikl minimizing c as given by (2.2) (i.e. 
the minimizing wavelength is much greater than the thickness h of the upper layer). 
Thus, on the assumption that pa is not much different from pl,  the relevant case is 
where 

Hence, when h is adopted as the unit of length and hlc, as the unit of time, the 
approximate dispersion relation takes the dimensionless form 

(2.4) 

2Tl9(Pz-P1) h2 B 1. (2.3) 

c = 1 -alkl +/3k2, 

in which 

Note that c has a minimum c, = 1 -fa2//B at 1k1 = k, = ta/B, and that according to 
(2.3) both k, and 1 -c, > 0 are small in comparison with 1. 

It is thus implied that all sinusoidal long waves of infinitesimal amplitude 
propagating in the z-direction satisfy approximately the dimensionless linear 
equation 

because lkl is the symbol of L and k2 the symbol of -8;. Therefore, by the Fourier 
rlt+(rl-aLrl-Brllzz)x = 0, (2.5) 
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principle, equation (2.5) also governs the unidirectional propagation of infinitesimal 
long waves of arbitrary form; and the same equation is satisfied by velocity 
components and other variables describing the motion, all of which are linearly 
related to the interfacial displacement q(x, t ) .  

The terms with coefficients a and /3 in (2.5) account approximately for dispersive 
effects on reasonably long waves, being then small corrections to 

l;lt +92 = 0, (2.6) 
which is one factor of the wave equation qtt = qzz. Specifically, if the (dimenaisnal) 
lengthscale of the wave motion is A % h, then the dispersive terms in (2,E) are O(h/A) 
relative to the leading terms copied in (2.6). 

For long waves of finite but reasonably small amplitude, nonhear effects are 
similarly accountable by a small correction to (2.6). Ignoring dl dieperkhe eff0ota, 
one obtains a nonlinear hyperbolic system equivalent to the shallaw-water equsltiom 
(Lamb 1932,s 187). Hence, as is standard, consideration of simple waves propagating 
in the x-direction towards a state of rest will lead to the one-dimensional hyperbolic 
equation 

for a suitably normalized dependent variable u(x, t ) .  
Suppose the typical magnitude of u to be a/h  Q 1 and to be comparable with h/h 

(i.e. ah/h2 = O(1) as h/A + 0). Then one can infer that a consistent first approximation 
for both dispersive and nonlinear effects is given by adding the extra terms in (2.5) 
and (2.7) compared with (2.6). Thus the equation governing long waves subject to 
comparably small effects of dispersion and nonlinearity is 

Ut + u, + 2uu, = 0 (2<7) 

ut+(u+u2-aLu-/3u,,), = 0, (2.8) 

which is the same as (1.1). 
More specifically, the scheme of approximation just outlined shows that the 

dependent variable in (2.8) is u = $i/co, where a is the (dimensional) mean horizontal 
velocity in the upper layer. To the same order of approximation, it also appears that 
u = b / h ,  where l;l is the downward vertical displacement of the interface. 

Note that the aurface-wave problem cited in the first paragraph of $1 is not 
recoverable by taking the limit p1 + 0 in the foregoing approximate analysis. The 
gravity-capillary surface solitary waves mentioned in $1 have no direct relation to 
the interfacial solitary waves described by (2.8). Although the limit pl+O in (2.1) 
recovers the dispersion relation for infinitesimal surface waves, there is then no 
definable long-wave speed co and long-wave approximations are irrelevsne, In fact, 
nonlinear effects enter the surface-wave problem in ways quite different from those 
represented in (2.8). 

3. Solitary-wave properties 

$(x) is an even function satisfying 
It will be confirmed in $4 that (2.8) has solutions in the form u = $(x -c t ) ,  where 

aE$(x)+O as x+ f m ,  n -  0,1,2 ,.... (a'i) 

In view of the property (3.1), an integration of (2.8) with respect to x after $ has been 
substituted shows the equation for $ to be 

w = $2 - aL$ - /3dzz (3.2) 
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FIGURE 1. Sketch of waveform. 

with C = c- 1. Each term of this equation is an even function when qd is so. Because 
L and 8; are translation-invariant operators, every translation d(x- ct) satisfies ( 3 2 )  
when $(x) is a solution. Accordingly, $ can be treated as an even function and ita 
significance as a steady travelling wave left implicit henceforth. 

To provide the asymptotic property (3.1), the linearization of (3.2) must have 
solutions converging to zero as x - t  f co. Postulating solutions exp with k 
complex, we find the possible values of k from (2.4) considered a quadratic 
equation in k. It thus appears that 

k = km&i(T), c,-c 4 
(3.3) 

where k, = ta//3 and C, = c,- 1 = -$aZ//p as noted below (2.4). This result shows 
that solitary waves must have C < C,: that is, their speeds of propagation are less 
than the minimum speed of infinitesimal sinusoidttl waves. Solitary waves have 
oscillatory outskirts, where the spacing between successive zeros is n / k ,  = 27~/3/a; 
the ambiguous sign in (3.3) allows for exponential decay at a rate [(C, - C)/flx > 0 
both as x+ m and as x+ - co. Figure 1 shows a sketch of the waveform. 

From (3.2) and the asymptotic property (3.1) of 4, it follows that 

C( $ dz = JR $ z  dx, 
R 

which, as C < C, < 0, shows that 

b $ d x  < 0. (3.4) 

It also follows that 

C dZ dx = ($3- a$L$ +/3$:) dx. 
J R  J R  

(3.5) 

Because -alkl +pk2 2 -+az//3 = C, for real k ,  Parseval's theorem establishes that 

Hence 

and consequently 

JR$3dx < (C-C,) @dx < 0, IR 
inf$(x) < C-C, < 0. 
XGR 
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In keeping with the properties (3.4), (3.6) and (3.7), it may be expected that even 
solitary-wave solutions of (3.2) satisfy q5(0) = infq5(x) < 0, as shown in figure 1. 
Moreover, the solitary-wave amplitude -q5(0) may be expected to increase with 

3.1. Invariants 

In order to introduce further information about solitary waves, we now recognize 
properties attributable to all solutions u(x, t)  of the evolution equation (2.8). First 
note that 

c, - c. 

F(u)  : = &2 dz = const. (3.8) J 
Here and in what follows the range of integration is left implicit : either it is R in the 
case of solutions u that vanish together with all their x-derivatives as x+ 4 a, or it 
is a fixed interval [ - 1, I ]  in the case of solutions that are periodic in x with period 21. 
As an operation on periodic functions, L has an obvious generalization in terms of 
Fourier series (see context of (4.4) in $4). 

The property dF(u)/dt = 0 follows immediately upon differentiation of the 
integral (3.8) with respect to t and substitution for ut from (2.8). In either of the cases 
just specified, the resulting integral is seen to vanish according to integrations by 
parts and the facts that L is symmetric and commutes with a,. 

G(a) : = (+u3-~auLu+&3u3 dx = const. (3.9) s Next note that 

Denoted by V, say, the variational derivative of F ( u )  + G(u) recovers an expression 
appearing in (2.8), thus 

V ( F  + G)(u) = u + u2 - O~LU -/3~,,. 
Hence, in view of (3.8), the property dG(u)/dt = 0 follows at once. In fact, F + G  is 
the (conserved) Hamiltonian functional for a Hamiltonian representation of (2.8), 
namely 

with cosymplectic operator -a, (cf. Benjamin 1993b, chaps. 3 and 4). 

3.2 Variational principle 
Equation (3.2) can be rewritten in the form 

CVF(q5) = VG(q5), (3.10) 

being satisfied by solitary waves and by a kindred class of periodic steady waves to 
be considered in $4. A variational characterization of all such waves is thus indicated. 
The principle is 

G(q5) = minG(u) for given F ( u )  > 0. (3.11) 

Plainly (3.10) is the Euler-Lagrange equation which is a necessary condition for q5 to 
be the conditional minimizer, and C is the Lagrange multiplier. The spectrum of 
possible solitary waves corresponds to the prescribable values of F(q5). 

Relative to any extremalq5, the conditional second variation of G for prescribed F 
is 

(3.12) 
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t 

FIGURE 2. Dependence of F(#)  and G(#) on C < C, < 0. 

in which the otherwise arbitrary variation &x) is subject to the (isoperimetric) 
condition 

$6dx = 0. (3.13) 

For G($) to be a conditional minimum, the quadratic form #($ ; 6)  in 6 must be non- 
negative when subject to (3.13). 

= &, which satisfies (3.13). By differentiation of (3.2), it  appears 
that #($ ; 9,) = 0. But this case merely represents an infinitesimal translation of $, 
which obviously cannot change G or F .  Note also that, according to (3.2) and (3.12), 

1 
Note the case 

El($;$) = c2 i$adx < 0. s 
Thus the condition (3.13) excluding the case 6 = $ is essential: G($)-CF($) is a 
stationary value but cannot be an unconditional minimum. 

3.3. Dependence on C 
Consider the class of solitary waves $ parameterized by C = c - 1 < C, < 0. Because 
q5 satisfies (3.2) (equivalently (3.10)), it is evident that 

CdF($)/dC = dG($)/dC; (3.14) 

and it can be presumed that G($) t 0 and C-C, t 0 as F($)  J. 0. (This assumption will 
be borne out by estimates to be introduced in $4.) Accordingly, (3.14) indicates 

a ( $ ) / d C  < 0, dG($)/dC > 0, (3.15a, b )  

as may be expected. Moreover, as (3.5) corresponds to 

(3.14) implies (3.16) 

which accords with (3.6) and (3.15b). The situation thus exposed is illustrated in 
figure 2. 

With the integrals appropriately redefined, the properties (3.15) and (3.16) hold 
also for the class of periodic solutions $(x ; 21) with period 21 that will be established 



408 T. B, Benjamin 

in $4. Perhaps needless to say, eaoh olass of steady-wave solutions can be considered 
to arise by bifurcation from the null solution of (3.2) as F is increased from zero, or 
as C is lowered through the value 0,. 

4. Existence theory 
The variational prinoiple (3.11) will now be used to show that (3.2) has solitary- 

wave solutions. Having been applied previously to a closely related problem 
(Benjamin 1974, JO), the argument will be presented in essential details only. 

4.1. Periodic solutions 
Equation (3.2) is first shown to be satisfied weakly by even non-trivial functions 
&x; 21) that are periodic with period 22. Each of these functions realizes the minimum 
of G(u) for a respective F(u) > 0 (with the integrals from - Z to 1 in the definitions (3.8) 
and (3.9) of F and G). Let us take 1 = Nn/k, = 2Nn@/a with N = 1,2,3, ..., so that, 
with the integrals over one period, the inequality preceding (3.6) adapts to periodic 
functions, and consequently the u priori estimates (3.6) and (3.7) also hold for 
periodic solutions of (3.2). 

Consider the Sobolev space H'( - 1, 1 )  of (equivalence classes of) even real functions, 
with norm given by 

n 

The functional F = i l l  * ll;, say, is weakly continuous in this space (according to the 
famous theorem named after Rellich). Because there is a positive constant /I such 
that infu(z) 2 - , u ~ ~ ~ ~ ~ ~ ,  the functional G is bounded below in H'( -I, I) ;  specifically, 

G(u) 2 - (& llull1+ i l cml )  11% I I  ; 
2 -(~Ilull1+81~ml)ll~II?. 

Moreover, being expressible as the sum tllull? plus weakly continuous functionals, G 
is weakly lower semicontinuous in the space H'( -1 ,Z) .  

It follows at once that minG(u) for given F(u) > 0 is achieved by an element 

There remains only to confirm that the respective constant solution $ = A  = 
-(2F/l)i of (3.2), with C = A ,  is not the conditional minimiaer. In the expression 
(3.12) for the second variation, take 6 = cos kmx, which, heoauae 1 = Nz/km, is an 
admissible even periodic variation satisfying (3.13). The result is 

#(A ; cos k, x) = g2 l(A + C,) < 0, 
showing that G(A) is not the conditional minimum, (In faot, the trivial solution A 
may be seen not to minimize G for given F whenever 1 > 2xa/(a+ (aa-4pA)i}.) 

Note incidentally how for periodic solutions the estimate oorresponding to (3.7) 
also follows from the minimizing property of $ ( x ;  22). With a = f (W/Z)i, we have 
u = ucos k,x as a competitor for the oopditiarlal minimum of B; but i t  is an 
unsuccessful competitor in not satisfying (3.2) ~ Henoe 

G(4) < G(acosk,x) = @,F < 0. 

+(x; 21)€H'( -I, I). 

For the periodic case, the identity (3.5) is equivalent to 
I n 
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where the explicit integral must be non-positive and is presumably negative 
(because, if it  were positive, G ( - # )  would be less than G($), contrary to the 
minimizing property of 4). Hence C < C,,,. 

4.2. Regularity 
Having been established as the minimizer of G for given F > 0, the equivalence class 
$(z; BZ) EH'( - I ,  1 )  satisfying (3.2) weakly is now shown in fact to include an infinitely 
differentiable function. Writing d = (ICl-,di3~)-', let us recast (3.2) in the form 

# = -d (#2-aL$) ,  (4 .2)  

which i s  ttn operator equation acting in H'( - I ,  I ) .  With reference to the Fourier-series 
representation of any u ~ H l ( - Z , l ) ,  i.e. to 

with k, = nnll and a_, = a,, we have 

d u ( x )  = a coskflx. 
fl--m ICI +/x (4.4) 

That is, the symbol of d is (ICl+/jki)-'. Similarly, the symbol of d L  is 

As a generalization of (4.1), higher-order Sobolev spaces X8( -I, 1 )  with s = 2 , 3 ,  . . ., 
lkfll/(lQl +Bk2,). 

have norms given by 
m 

11.11: = 21 c ( 1  +,dk:)"a: 
n--m 

with 

= I' -1 {i 1-0 ~ ) @ ( W } d x ,  

S! 

j ! (s- j )  ! . 6) = 

(4.5) 

According to the Riemann-Lebesgue theorem referred to (4.3) and (4 .5) ,  the 
attribution U E  H8 ( -1,  I )  implies 3i-l u to be a continuous function (or rather its 
equivalence class includes such a function). In particular, u EH' ( -  1, I )  implies u(x) to 
be continuous, a fact already evoked in the second sentence after (4.1). 

The original attribution EH' ( - I ,  I )  therefore implies the same for #z. Hence (4.4) 
and (4.5) show that d q 5 2 ~ H s  (1, I ) .  Also ~ L # E H ~  ( - -1 , l ) .  It thus follows from (4.2) 
that $ E H 2  ( - I ,  1 ) ,  and by induction the same argument leads to the conclusion that 
# €HOD ( - 1 ,  I ) .  Thus the conditional minimum of G is proven to be realized by a C" 
function #(x; 21) satisfying (3.2). 

4.3. Passage to solitary waves 
For each l = Nz/k, with N = 1 ,2 ,3 ,  ..., a non-trivial smooth periodic solution of (3.2) 
has been shown to exist corresponding to a given positive value of F, defined by an 
integral (3.8) from - I  to 1. Each of these periodic solutions satisfies the a priori 
estimates (3.4), (3.6), (3 .7) ,  (3.15) and (3.16) when the integrals are redefined in the 
same way. Evidently, to maintain the same F whenN+ 00, #"x; 22) must tend to zero 
in subsets of increasing large measure within the interval [ - I ,  11, for instance in 
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(il, 1 )  and ( - 1 ,  -@). It can therefore be concluded that, corresponding to each given 
F > 0, (3.2) has a smooth solitary-wave solution $(x) such that I&x) -$@; 21)1+ 0 
in ( - $ l , # )  as l=Nn/k,+co. 

4.4. Other approaches 
In the past various other methods have been used to establish the existence of 
solitary-wave solutions of nonlinear problems where such solutions are not known 
explicitly. For example, a general method based on positive-operator theory was 
developed by Benjamin, Bona & Bose (1990) for the treatment of problems where 
solitary waves belong to a cone of non-negative functions defined on R.  But this 
method seems to be unavailing for the present problem, solitary-wave solutions of 
which are always oscillatory functions. 

The follqwing alternative is noteworthy, however. In.  terms of the Fourier 
transform $ ( k )  = 94, which is an even real function if $ is even, equation (3.2) is 
equivalent to 

where d * denotes the convolution of q! with itself. For periodic solutions of (3.2), 
an equation akin to (4.6) holds for the set of real coefficients {a,}$-m in the Fourier- 
series representation (4.3) of &; 21). 

When C is prescribed to satisfy C < C,, the denominator on the right-hand side of 
(4.6) is positive for all ke R.  It thus appears likely that the solitary-wave soiution 
$(x) of (3.2) for any given C < C, has a non-positive Fourier transform (i.e. $(k) < 
O V  kER). Again, periodic solutions $(x; 21) with 1 large enough may have Fourier 
(cosine) series with non-positive coefficients. An existence theory could be directed to 
(4.6) as an operator equation posed in a cone of non-positive functions, or to the 
corresponding equation for Fourier coefficients posed in a cone of non-positive 
sequences (i.e. sequences {bm}$-m elz,  say, all of whose elements satisfy b,  < 0). 

5. Conclusion 
About the new class of oscillatory solitary waves that has been investigated here, 

the following point deserves re-emphasis. Because they minimize the functional G for 
given values of the functional F ,  and because G and F are invariants for any solutions 
of the evolution equation ( 1 . 1 )  or (2.8), these waves are likely to be orbitally stable (i.e. 
Lyapunov stable with respect to a metric that factors out translations). The property 
that solitary-wave solutions of the KdV equation are conditional minimizers (or 
maximizers, according to the sign of p) of invariant functional5 has been used by 
Benjamin (1972) and Bona (1975) to prove the orbital stability of such solutions. And 
many others since have adapted the method to solitary-wave solutions of comparable 
evolution equations. Although now deferred, a proof of stability should be feasible in 
the present case too. 

It is therefore reasonable to expect that solitary waves of the present type should 
be observable experimentally, although h will probably need to be quite small. The 
condition (2.3) is the main criterion of realizability. Take, for example, the case of 
benzene on water. Then p2-p1 = 0.3 g cm-3 and T = 35 dyn cm-l (Kaye & Laby 
1966, p. 42). It follows that 2T/g(p2-pl) h2 = 24/h2 with h in mm. For h = 2 mm, 
say, the value 6 of the dimensionless number in question is perhaps large enough for 
confidence in the relevance of the present theory. Even better experimental 
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prospects may be provided by other organic liquids, specifically ones that are 
immiscible with water and have significant surface tensions against water, also 
having fairly small viscosities and densities only slightly less than that of water. 
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